

Design, Analysis and Selection of Electric and Magnetic loading for Different Rating of Squirrel Cage Induction Motors by using MATLAB GUI Software

Dimple Sharma¹, R.K. Saini², Sunil Pathania³

M.Tech Student, Shoolini University, Solan (H.P), India¹

Assistant Professor, Shoolini University, Solan (H.P), India^{2,3}

Abstract: This paper presents the designing of the main dimensions and the selection of the magnetic and electric loading for different rating of squirrel cage induction motors to reduce the overall losses and to improve the power factor. A software development strategy for the design of main dimensions and the effects of various factors are studies to select the best parameters for the particular ratings of the machines. The redesign time can be reduced with the help of this software during the course of learning and manufacturing of the inductions motors. The idea of designing the main dimensions of three phase squirrel cage induction motor by MAT LAB GUI is simple fast and friendly nature.

Index Terms: Three phase squirrel cage induction motor, MAT LAB- GUI.

I. **INTRODUCTION**

Three phase induction motor is an important class of electric motors which finds wide application in industry and farms sector. More than 85% of industrial motors in use today are in fact induction motors .Although the design procedure for induction motor are well established, but there are some areas which require special attention [1]. After the completion of calculations of induction motor design, it has been observed that performance of the machine is not satisfactory .In this condition the designer has to change some design parameters like electric and magnetic loading. Hence iterative calculations of the entire design procedure are required to achieve the satisfactory and economic design. After designing the main parts of the machine the suitable electric and magnetic loading must be selected for proper selection of number turns per phase for the stator winding, stator conductor per slot, end ring current, copper loss, slot leakage reactance etc for stator and rotor design. This type of software will be a beneficial tool for the educational purpose also [2-4] The basic objective of this paper is to modify the design procedure for different rating of squirrel cage induction motors retaining the main dimensions, to get the desired performance under the variation of electric and magnetic loading [3-5].

1.1 Role of Electric and magnetic loading.

A small magnetic loading gives good power factor and K.V.A = H.P* 0.746/ n *CosØ reduces the core losses but a small over load capacity. A If the rating of the Machine is given in KW, then high value of magnetic loading gives poor power factor and $KVA = KW / n^* \cos \theta$ increases the core losses also. For general purpose, over load capacity and for large capacity high speed rang should Number of poles (p) =120*f/Speed in r.p.m. be 0.3 to 0.55 Tesla, 0.6 to 0.65 Tesla and 0.45 to 0.55 Tesla The product of $D^2 L=KVA/C_{0*}n_s$. respectively. On the other hand the high value of electric Where $C_0 = 1.11 * \pi^{2*} K_{w*} B_{av*} ac^{*}10^{-3}$ loading is restricted because of temperature rise and over Choose L/ 000 to 1.5 Load capacity .Depending on the capacity of the machine Peripheral Velocity (V) = π Dn m/sec. the value of electric loading varies between 5000 to (If the value of peripheral velocity is less than 30m/sec then 45000amp.cond/m. [1, 3]

1.2 OUT PUT EQUATIONS.

The following Equations are used for the calculations of the main dimensions of the machine and the same equations are used to develop the MAT LAB GUI software for the inputs and outputs. Let

Es=EMF induced per phase in volts

(Induced EMF per phase=Applied voltage per phase).

Iph=Current per phase.

Ts = Number of turns per phase.

 Φ =Flux per pole in the air gap.

P = Number of poles.

Kw= Winding Factor.

 B_{av} =Value of flux density in the air gap.

ac=Ampere conductors per meter of the armature periphery.

D=Length of stator bore diameter in meters.

L= Length of stator core in meters.

Ns=Synchronous speed of the motor in r.p.s.

 η = Full load efficiency.

 $Cos\Phi$ =Full load power factor.

 \square =Pole pitch= π *D/P.

1.3 Calculations for the main dimensions of stator and Rotor.

If the rating of the machine is given in horse power, then

Synchronous speed of the machine (n_s) =Speed in r.p.m/f

no radial vent. Duct is required.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 3, Issue 4, April 2015

Net iron length will be =0.9 L (Assume stacking Magnetic loading =0.45 factor=0.9) Flux per pole (Φ_m) =B_{av*} π *D*L/P Stator turns per phase (T_s) =Es/4.44* KW_s * f * Φ_m Stator current per phase (I_s) = KVA* 1000/3 * E_s Assume current density $\binom{\delta}{s} = 4$ to 5 A/mm² Conductor cross section $(A_s) = I_s / \delta_s mm^2$ Choose slots per pole per phase (p) = 3Total number of slots for stator=3*P*P_h Resistance per phase (Rs) = 0.021*Lmt*Ts/As in ohms. Total I²R losses $=3*Is^{2}*Rs^{10^{-3}}$ in Kw Maximum flux density in the air gap (Bg) = Bav* $\pi/2$ No load Maximum flux per pole (fp) =Bg* π *D *L Length of air Gap (Lg) = $0.2+2(D*L)^{0.5}$ Rotor bar Current $(I_b) = m.m.f^*6^*Is^*Ts$ Area of each bar $(a_b) = Ib/\delta_s$ End ring Current (Ie) = $Sr^{*}Ib/\pi^{*}P$ Area of End ring (Ae) = $Ie / \sqrt{\delta_s}$ Resistance of each bar (Rb) = $0.021*lb/a_b$ Copper losses in all the bars $(A) = I_b^2 * Rb*Sr$ Resistance of each end ring (Re) = $0.021*\pi$ *Mr/Ae Total copper loss in both the rings (B) = $2*Ie^{2}*Re$ Total copper losses =A+B Watts [1, 3].

1.4 RESULTS

The results of the Analytical method using the above equations are compared with the software MATLAB-GUI development

Table 1: Analytical Results Vs MATLAB GUI Results

Induction motor parameters	Analytical Results (Output)	MATLAB GUI Results (Output)	
Output coefficient			
Synchronous Sped.	115.975	115.984	
Number of poles.	1000	1000	
Product of D ² L.	6	6	
Diameter Of core.	0.033m ³	0.034m ³	
Length of core.	0.44m	0.45m	
Net Iron Length.	0.209m	0.209m	
Flux/pole.	0.171m	0.172m	
Stator turns/phase	0.020232wb	0.020232wb	
Stator current/phase	102	102	
Conductor per slot	48.939Amp	48.94	
No of stator slots.	11	11	
Slot Pitch.	54	54	
Resistance/Phase.	0.023m	0.023m	
Total Copper losses.	0.187Ohm	0.187ohm	
Length of Air Gap.	1346.97W	1346.94W	
Rotor bar current.	0.780mm	1.73mm	
Area of each bar.	456.93Amp	456.92amp	
End ring current.	70.298mm ²	70.30mm2	
Area of End Ring.	1381.75amp	1380.43Amp	
Resistance of Each end ring.	212.57mm ²	211.04mm ²	
Total copper losses in both	0.00ohm	0.00ohms	
end rings.	136.22W	136.22W	
Total copper losses.	1060.57W	1060.57W	

as shown in Table No-1 for the rating of 50 Kw and the effects of the variables parameters like electric, magnetic loading and voltage unbalance are observed on 5HP, 7HP and 9HP induction motors .Table number 2, 3 and 4 are used for the calculation of variable parameters and the effects of results are observed in graph number 1, 2 and 3.

1.5 INPUT PARAMETERS

Applied voltage = 400VRated frequency = 50Hz Number of phases = 3Full load efficiency =0.90 Power factor =0.87

Electric loading = 21000Types of winding = single layer Winding factor =0.955 Type of Rotor windings =Cage type Rotor winding factor= 1 Power factor =0.87Magnetic loading =0.45Electric loading = 21000Types of winding= single layer Winding factor =0.955 Type of Rotor windings =Cage type

Air gap	o flux	density vs	Stator	turns	per	phase

Air gap Flux Density	0.3	0.34	0.37	0.45	0.51	0.57	0.63
5HP	632	606	590	552	530	510	494
7HP	505	485	471	441	423	408	394
9HP	427	410	398	373	358	345	333

Table No -2

Ampere Conductors Vs Stator turns per phase

Ampere conductor	6000	12000	18000	24000	30000	36000	42000
5 HP	238	377	495	599	696	786	871
7HP	190	301	395	479	556	628	696
9HP	160	255	334	405	470	531	588

Table No -3

Graph No -2

Variation of Voltage Vs Stator copper losses in KW

Voltages/ Rating of Machine	400	395	390	385	380	375	370
5 HP	0.164	0.166	0.168	0.171	0.173	0.175	0.178
7HP	0.257	0.259	0.264	0.267	0.271	0.275	0.278
9HP	0.360	0.365	0.369	0.374	0.379	0.384	0.389

TableNo-4

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 3, Issue 4, April 2015

MATLAB-GUI for stator and Rotor Table No -5

flux per pole

Edt Text

Edit Text

turns per phase

length of air gap Edit Text stance of each ba

Edit Text

Edit Text

total copper los hoth rince

of each

CONCLUSION

The MATLAB-GUI results of three phase induction motor slightly varies in values when compared with the analytical results, the difference may occur due to the fact that the analytical calculations are full of approximations, time consuming and hence associated with frequent errors, but the slight difference between the analytical and the computer added values have not much effects on the design of the motor. The computer added design is much better as

compared to the analytical calculations as it saves the time and the results will be more accurate. With the computer added design the effects of variations of parameters on the design can also be observed easily.

REFERENCES

- [1] A.K.SAWHNEY, "A Course in Electrical Machine design", Dhanpatrai & Sons.
- [2] Sunil Sehra, "performance evaluation of three phase induction motor based on no load and blocked rotor test using mat lab 'International Journal of Science, Environment and Technology, Vol. 1, No 5, 2012, 541 – 547.
- [3] A.K. Sawhney, Dr.A.Chakrabarti "A course in Electrical Machine Design", Dhanpat Rai &Co (p) ltd, sixth edition, 2006.
- [4] Deepa Vincent, "Bindu R, Three Phase Induction Motor Design in Windows Programming Platform", International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013.
- [5] Aanchal Baranwal, "Designing of Three Phase Induction Motor Using MATLAB GUI'," MIT International Journal of Electrical and Instrumentation Engineering, Vol. 4, No. 1, January 2014, pp. 42–44 42ISSN 2230-7656 © MIT Publications.
- [6] Dr.A.Raghuram, V. Shashikala, "Design and Optimization of Three Phase Induction Motor using Genetic Algorithm", International Journal of AdvancesComputerScienceanTechnologyVolume2 No.6, June2013
- [7] Ran N.Patel, "Programming in MATLAB" Pearson.

ngth of stator core

Stator sk

Rotor slots

Yolfan

length of rotor ba